Despite the omnipresent use of stochastic gradient descent (SGD) optimization methods in the training of deep neural networks (DNNs), it remains, in basically all practically relevant scenarios, a fundamental open problem to provide a rigorous theoretical explanation for the success (and the limitations) of SGD optimization methods in deep learning. In particular, it remains an open question to prove or disprove convergence of the true risk of SGD optimization methods to the optimal true risk value in the training of DNNs. In one of the main results of this work we reveal for a general class of activations, loss functions, random initializations, and SGD optimization methods (including, for example, standard SGD, momentum SGD, Nesterov accelerated SGD, Adagrad, RMSprop, Adadelta, Adam, Adamax, Nadam, Nadamax, and AMSGrad) that in the training of any arbitrary fully-connected feedforward DNN it does not hold that the true risk of the considered optimizer converges in probability to the optimal true risk value. Nonetheless, the true risk of the considered SGD optimization method may very well converge to a strictly suboptimal true risk value.


翻译:暂无翻译

0
下载
关闭预览

相关内容

专知会员服务
55+阅读 · 2020年3月16日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员