The stochastic blockmodel (SBM) models the connectivity within and between disjoint subsets of nodes in networks. Prior work demonstrated that the rows of an SBM's adjacency spectral embedding (ASE) and Laplacian spectral embedding (LSE) both converge in law to Gaussian mixtures where the components are curved exponential families. Maximum likelihood estimation via the Expectation-Maximization (EM) algorithm for a full Gaussian mixture model (GMM) can then perform the task of clustering graph nodes, albeit without appealing to the components' curvature. Noting that EM is a special case of the Expectation-Solution (ES) algorithm, we propose two ES algorithms that allow us to take full advantage of these curved structures. After presenting the ES algorithm for the general curved-Gaussian mixture, we develop those corresponding to the ASE and LSE limiting distributions. Simulating from artificial SBMs and a brain connectome SBM reveals that clustering graph nodes via our ES algorithms can improve upon that of EM for a full GMM for a wide range of settings.
翻译:在网络节点断裂子集成模型(SBM)模型中,网络节点内部和之间互连的连接性。先前的工作表明,SBM的相邻光谱嵌入(ASE)和拉普拉西亚光谱嵌入(LSE)的行在法律上都与高西亚混合物相融合,因为其中的成分是曲线指数式的成份。通过完整高斯混合模型(GMM)的期待-最大值算法(EM)进行最大可能性估计,然后可以完成组合图形结点的任务,尽管不吸引组件的曲线。我们注意到EM是期待-溶解(ES)算法的一个特例,我们建议两种ES算法允许我们充分利用这些曲线结构。在介绍了一般曲线-Gaussian混合物的ES算法之后,我们开发了与ACE和限制分布的缩放量对应的。从人工SBM和大脑连接SBM中模拟,通过我们的ES算法显示,通过我们的ES算法,组合图结点可以通过整个IM改进整个GM。