Knowledge graphs (KGs) have attracted more and more attentions because of their fundamental roles in many tasks. Quality evaluation for KGs is thus crucial and indispensable. Existing methods in this field evaluate KGs by either proposing new quality metrics from different dimensions or measuring performances at KG construction stages. However, there are two major issues with those methods. First, they highly rely on raw data in KGs, which makes KGs' internal information exposed during quality evaluation. Second, they consider more about the quality at data level instead of ability level, where the latter one is more important for downstream applications. To address these issues, we propose a knowledge graph quality evaluation framework under incomplete information (QEII). The quality evaluation task is transformed into an adversarial Q&A game between two KGs. Winner of the game is thus considered to have better qualities. During the evaluation process, no raw data is exposed, which ensures information protection. Experimental results on four pairs of KGs demonstrate that, compared with baselines, the QEII implements a reasonable quality evaluation at ability level under incomplete information.


翻译:知识图谱(KGs)因其在许多任务中的基础角色而吸引了越来越多的关注。因此,对于KGs的质量评估至关重要且不可或缺。该领域中现有的方法通过从不同维度提出新的质量指标或在KG构建阶段衡量性能来评估KGs。然而,这些方法存在两个主要问题。首先,它们高度依赖KGs中的原始数据,这使得KG的内部信息在质量评估过程中暴露。其次,它们更多地考虑了数据层面的质量而不是能力层面,而后者对于下游应用更为重要。为了解决这些问题,我们提出了一个不完全信息下的知识图谱质量评估框架(QEII)。“质量评估”任务被转化为两个KGs之间的对抗性问答游戏。游戏的获胜者因此被认为具有更好的质量。在评估过程中,不会暴露任何原始数据,从而确保信息保护。对四对KGs的实验结果表明,与基线相比,QEII在不完全信息下实现了合理的能力层面的质量评估。

0
下载
关闭预览

相关内容

NeurIPS 2021 | ConE: 针对知识图谱多跳推理的锥嵌入模型
专知会员服务
24+阅读 · 2021年12月5日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月30日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
0+阅读 · 2023年5月26日
Arxiv
139+阅读 · 2023年3月24日
Efficiently Embedding Dynamic Knowledge Graphs
Arxiv
14+阅读 · 2019年10月15日
VIP会员
相关VIP内容
NeurIPS 2021 | ConE: 针对知识图谱多跳推理的锥嵌入模型
专知会员服务
24+阅读 · 2021年12月5日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
4+阅读 · 2009年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员