Due to the instability and limitations of unimodal biometric systems, multimodal systems have attracted more and more attention from researchers. However, how to exploit the independent and complementary information between different modalities remains a key and challenging problem. In this paper, we propose a multimodal biometric fusion recognition algorithm based on fingerprints and finger veins (Fingerprint Finger Veins-Channel Spatial Attention Fusion Module, FPV-CSAFM). Specifically, for each pair of fingerprint and finger vein images, we first propose a simple and effective Convolutional Neural Network (CNN) to extract features. Then, we build a multimodal feature fusion module (Channel Spatial Attention Fusion Module, CSAFM) to fully fuse the complementary information between fingerprints and finger veins. Different from existing fusion strategies, our fusion method can dynamically adjust the fusion weights according to the importance of different modalities in channel and spatial dimensions, so as to better combine the information between different modalities and improve the overall recognition performance. To evaluate the performance of our method, we conduct a series of experiments on multiple public datasets. Experimental results show that the proposed FPV-CSAFM achieves excellent recognition performance on three multimodal datasets based on fingerprints and finger veins.
翻译:由于单式生物鉴别系统的不稳定性和局限性,多式联运系统吸引了研究人员越来越多的关注,然而,如何利用不同模式之间的独立和互补信息仍然是一个关键和具有挑战性的问题。在本文件中,我们提议基于指纹和手指血管的多式生物鉴别聚合鉴定算法(Fingerprint Finger Veins-Channes-Channel 空间注意力聚合模块,FPV-CSAFM)。具体地说,对于每对指纹和手指血管图像,我们首先提议一个简单而有效的进取神经网络(CNN)来提取特征。然后,我们建立一个多式联运特征聚合模块(Channel空间注意力聚合模块,CSAFM)来充分整合指纹和手指血管之间的互补信息。与现有的聚合战略不同,我们的聚合方法可以根据不同方式在频道和空间层面的重要性动态地调整聚合重量,以便更好地将不同模式之间的信息结合起来,改进总体识别性能。我们要对多种公共数据集进行一系列实验。实验结果显示,拟议的FPV-CSAFMFMR在三种模像上取得了出色的性能。