In this paper a time-fractional Black-Scholes model (TFBSM) is considered to study the price change of the underlying fractal transmission system. We develop and analyze a numerical method to solve the TFBSM governing European options. The numerical method combines the exponential B-spline collocation to discretize in space and a finite difference method to discretize in time. The method is shown to be unconditionally stable using von-Neumann analysis. Also, the method is proved to be convergent of order two in space and $2-\mu$ is time, where $\mu$ is order of the fractional derivative. We implement the method on various numerical examples in order to illustrate the accuracy of the method, and validation of the theoretical findings. In addition, as an application, the method is used to price several different European options such as the European call option, European put option, and European double barrier knock-out call option.
翻译:本文认为一种时间不折不扣的黑球模型(TFBSM)可以研究基础分形传输系统的价格变化。 我们开发并分析一种数字方法来解决欧洲选项的TFBSM。 数字方法结合了指数B- Spline合用空间分解, 和一定的差别方法, 以时间分解。 使用 von- Neumann 分析方法可以证明该方法无条件稳定。 另外, 这种方法被证明是空间第二顺序和2\mu$时间组合, 美元是分数衍生物的顺序。 我们应用了各种数字示例方法, 以说明该方法的准确性, 以及理论结论的验证。 此外, 作为一种应用, 该方法用来为欧洲调用选项、 欧洲放选项和欧洲双屏击出调用选项等欧洲不同选项定价价格 。