Evolution is the theory that plants and animals today have come from kinds that have existed in the past. Scientists such as Charles Darwin and Alfred Wallace dedicate their life to observe how species interact with their environment, grow, and change. We are able to predict future changes as well as simulate the process using genetic algorithms. Genetic Algorithms give us the opportunity to present multiple variables and parameters to an environment and change values to simulate different situations. By optimizing genetic algorithms to hold entities in an environment, we are able to assign varying characteristics such as speed, size, and cloning probability, to the entities to simulate real natural selection and evolution in a shorter period of time. Learning about how species grow and evolve allows us to find ways to improve technology, help animals going extinct to survive, and figure* out how diseases spread and possible ways of making an environment uninhabitable for them. Using data from an environment including genetic algorithms and parameters of speed, size, and cloning percentage, the ability to test several changes in the environment and observe how the species interacts within it appears. After testing different environments with a varied amount of food while keeping the number of starting population at 10 entities, it was found that an environment with a scarce amount of food was not sustainable for small and slow entities. All environments displayed an increase in speed, but the environments that were richer in food allowed for the entities to live for the entire duration of 50 generations, as well as allowed the population to grow significantly.


翻译:进化是当今动植物来自过去存在的种类的理论。 查尔斯·达尔文和阿尔弗雷德·华莱士(Alfred Wallace)等科学家将生命用于观察物种如何与环境互动、成长和变化。 我们能够预测未来的变化并利用遗传算法模拟过程。 遗传算法使我们有机会向环境和变化值提出多种变量和参数,模拟不同情况。 通过优化基因算法,将实体置于环境中,我们能够将不同特性,如速度、规模和克隆概率等分配给各实体,在较短的时间内模拟真实自然选择和演变。 学习物种的生长和演变如何使我们能够找到方法改进技术,帮助动物生存,帮助动物生存,并找出疾病传播的方式和可能使环境无法适应他们的方法。 利用环境数据,包括基因算法和速度、规模和克隆百分比参数,测试环境的若干变化的能力,以及观察物种在环境中的相互作用情况。 在试验不同环境时,用不同数量来模拟真实的自然选择和进化过程,在较短的时期内模拟真实的自然选择和进化过程。 学习物种的生长和进化如何让我们找到方法来改进技术, 帮助动物生存,帮助动物生存,帮助动物生存生存, 找出疾病的生长, 和生长, 并找出疾病传播过程的传播过程的传播过程的传播方式, 和生长过程在10个生物, 环境可以持续到可以持续到10个生物, 环境, 环境, 持续到可以持续到10个环境, 持续到10个 环境, 持续到一个持续到10个。 环境, 环境, 持续到10个。 环境, 环境, 持续到一个持续到一个持续的 环境, 环境, 环境, 持续到一个持续到一个持续 环境, 持续的 持续 持续到一个持续的 持续, 持续的 持续 持续 持续的 持续 持续的 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续 持续

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
14+阅读 · 2020年12月17日
Arxiv
16+阅读 · 2020年5月20日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Directions for Explainable Knowledge-Enabled Systems
Arxiv
26+阅读 · 2020年3月17日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员