We devise the fast adjoint response algorithm for the gradient of physical measures (long-time-average statistics) of discrete-time hyperbolic chaos with respect to many system parameters. Its cost is independent of the number of parameters. The algorithm transforms our new theoretical tools, the adjoint shadowing lemma and the equivariant divergence formula, into the form of progressively computing $u$ many bounded vectors on one orbit. Here $u$ is the unstable dimension. We demonstrate our algorithm on an example difficult for previous methods, a system with random noise, and a system of a discontinuous map. We also give a short formal proof of the equivariant divergence formula. Compared to the better-known finite-element method, our algorithm is not cursed by dimensionality of the phase space (typical real-life systems have very high dimensions), since it samples by one orbit. Compared to the ensemble/stochastic method, our algorithm is not cursed by the butterfly effect, since the recursive relations in our algorithm is bounded.
翻译:我们设计了一种快速联合反应算法, 用于不同时间的超曲混乱的物理测量梯度( 长期平均统计数据) 相对于许多系统参数而言。 它的成本与参数数无关。 算法将我们新的理论工具, 双影 Lemma 和 等同差异公式, 转化成一个轨道上逐渐计算 $u 的许多捆绑矢量的形式。 这里$u是不稳定的维度。 我们用一个对以前的方法来说困难的示例来展示我们的算法, 一个有随机噪音的系统, 和一个不连续的地图系统。 我们还给出了一个等离差公式的简短正式证明。 与更广为人知的定点法相比, 我们的算法没有被阶段空间的维度( 典型的实时系统具有很高的维度) 所诅咒, 因为它通过一个轨道进行取样。 与数子/ 分析法相比, 我们的算法没有被蝴蝶效应所诅咒, 因为我们算法中的回系关系是被束缚的。