Sequential Monte Carlo squared (SMC$^2$) methods can be used for parameter inference of intractable likelihood state-space models. These methods replace the likelihood with an unbiased particle filter estimator, similarly to particle Markov chain Monte Carlo (MCMC). As with particle MCMC, the efficiency of SMC$^2$ greatly depends on the variance of the likelihood estimator, and therefore on the number of state particles used within the particle filter. We introduce novel methods to adaptively select the number of state particles within SMC$^2$ using the expected squared jumping distance to trigger the adaptation, and modifying the exchange importance sampling method of \citet{Chopin2012a} to replace the current set of state particles with the new set of state particles. The resulting algorithm is fully automatic, and can significantly improve current methods. Code for our methods is available at https://github.com/imkebotha/adaptive-exact-approximate-smc.
翻译:连续的Monte Carlo 方(SMC$2$2美元)方法可用于难以调试的状态空间模型的参数推导。这些方法可以与颗粒 Markov 链子 Monte Carlo(MC MC ) 类似,用无偏粒粒粒颗粒过滤器取代可能性。与粒子 MC 一样,SMC$2美元的效率在很大程度上取决于概率估测器的差异,因此也取决于粒子过滤器中使用的状态粒子数量。我们采用新方法,利用预期的平方跳跃距离,在SMC$2美元范围内适应地选择状态粒子数量,以触发适应,并修改\ citet{Chopin2012a} 的交换重要性取样方法,以用新的状态粒子组取代当前状态粒子。由此产生的算法是完全自动的,可以大大改进当前的方法。我们方法的代码可以在https://github.com/imkebothara/adpti-exact-apaplob-smus。