We investigate the asymptotic relation between the inverse problems relying on the Helmholtz equation and the radiative transfer equation (RTE) as physical models, in the high-frequency limit. In particular, we evaluate the asymptotic convergence of a generalized version of inverse scattering problem based on the Helmholtz equation, to the inverse scattering problem of the Liouville equation (a simplified version of RTE). The two inverse problems are connected through the Wigner transform that translates the wave-type description on the physical space to the kinetic-type description on the phase space, and the Husimi transform that models data localized both in location and direction. The finding suggests that impinging tightly concentrated monochromatic beams can indeed provide stable reconstruction of the medium, asymptotically in the high-frequency regime. This fact stands in contrast with the unstable reconstruction for the classical inverse scattering problem when the probing signals are plane-waves.
翻译:我们调查高频极限中以赫尔姆霍兹方程式为依托的反面问题与作为物理模型的放射传输方程式之间的无症状关系。我们特别评估基于赫尔姆霍兹方程式的反向分散问题普遍版本的反向分散问题与利奥维尔方程式的反向分散问题(简化版RTE)的无症状趋同关系。两种反向问题通过将物理空间的波型描述转换为阶段空间动能型描述,而Husimi将模型数据转换为在位置和方向上都处于局部位置的模型。调查结果表明,在高频系统中,透透透集中的单色波束确实能够稳定地重建介质。这一事实与在探测信号为平流波时典型反向分散问题的不稳定重建形成对比。