Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device, thus preserving privacy and eliminating the need to store data globally. While there are promising results under the assumption of independent and identically distributed (iid) local data, current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases. To resolve this issue, we propose a simple framework, Mean Augmented Federated Learning (MAFL), where clients send and receive averaged local data, subject to the privacy requirements of target applications. Under our framework, we propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup, but does not require local raw data to be directly shared among devices. Our method shows greatly improved performance in the standard benchmark datasets of FL, under highly non-iid federated settings, compared to conventional algorithms.
翻译:联邦学习(FL)允许边际设备在不直接分享每个设备内的数据的情况下集体学习模型,从而维护隐私,消除全球存储数据的必要性。假设独立和同样分布(二d)当地数据,虽然在假设独立和同样分布(二d)当地数据的情况下有可喜的结果,但随着客户之间当地数据差异的增加,目前最先进的算法也出现性能退化。为了解决这个问题,我们提议了一个简单的框架,即“平均增强联邦学习(MAFL ) ”, 客户发送和接收平均本地数据,但须符合目标应用程序的隐私要求。根据我们的框架,我们提议一个新的增强算法,名为FedMix,它受一个惊人而又简单的数据增强方法(Mix)的启发,但并不要求设备之间直接共享当地原始数据。我们的方法显示,与常规算法相比,在高度非二联式环境中,FL标准基准数据集的性能有很大改善。