Federated learning (FL) allows edge devices to collectively learn a model without directly sharing data within each device, thus preserving privacy and eliminating the need to store data globally. While there are promising results under the assumption of independent and identically distributed (iid) local data, current state-of-the-art algorithms suffer from performance degradation as the heterogeneity of local data across clients increases. To resolve this issue, we propose a simple framework, Mean Augmented Federated Learning (MAFL), where clients send and receive averaged local data, subject to the privacy requirements of target applications. Under our framework, we propose a new augmentation algorithm, named FedMix, which is inspired by a phenomenal yet simple data augmentation method, Mixup, but does not require local raw data to be directly shared among devices. Our method shows greatly improved performance in the standard benchmark datasets of FL, under highly non-iid federated settings, compared to conventional algorithms.


翻译:联邦学习(FL)允许边际设备在不直接分享每个设备内的数据的情况下集体学习模型,从而维护隐私,消除全球存储数据的必要性。假设独立和同样分布(二d)当地数据,虽然在假设独立和同样分布(二d)当地数据的情况下有可喜的结果,但随着客户之间当地数据差异的增加,目前最先进的算法也出现性能退化。为了解决这个问题,我们提议了一个简单的框架,即“平均增强联邦学习(MAFL ) ”, 客户发送和接收平均本地数据,但须符合目标应用程序的隐私要求。根据我们的框架,我们提议一个新的增强算法,名为FedMix,它受一个惊人而又简单的数据增强方法(Mix)的启发,但并不要求设备之间直接共享当地原始数据。我们的方法显示,与常规算法相比,在高度非二联式环境中,FL标准基准数据集的性能有很大改善。

0
下载
关闭预览

相关内容

最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年4月30日
Arxiv
10+阅读 · 2021年3月30日
Arxiv
11+阅读 · 2020年12月2日
Augmentation for small object detection
Arxiv
11+阅读 · 2019年2月19日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员