While game theory has been transformative for decision-making, the assumptions made can be overly restrictive in certain instances. In this work, we investigate some of the underlying assumptions of rationality, such as mutual consistency and best response, and consider ways to relax these assumptions using concepts from level-$k$ reasoning and quantal response equilibrium (QRE) respectively. Specifically, we propose an information-theoretic two-parameter model called the Quantal Hierarchy model, which can relax both mutual consistency and best response while still approximating level-$k$, QRE, or typical Nash equilibrium behaviour in the limiting cases. The model is based on a recursive form of the variational free energy principle, representing higher-order reasoning as (pseudo) sequential decision-making in extensive-form game tree. This representation enables us to treat simultaneous games in a similar manner to sequential games, where reasoning resources deplete throughout the game-tree. Bounds in player processing abilities are captured as information costs, where future branches of reasoning are discounted, implying a hierarchy of players where lower-level players have fewer processing resources. We demonstrate the effectiveness of the Quantal Hierarchy model in several canonical economic games, {both simultaneous and sequential}, using out-of-sample modelling.


翻译:虽然游戏理论对决策具有变革性,但在某些情况下,所作的假设可能过于限制性。在这项工作中,我们调查了一些理性的基本假设,例如相互一致和最佳反应,并考虑如何分别利用从水平-美元推理和四级反应平衡(QRE)的概念来放松这些假设。具体地说,我们提议了一个信息理论双参数模型,称为量子分层模式,它可以放松相互的一致性和最佳反应,同时仍然接近于1美元、QRE或有限情况下典型的纳什平衡行为。该模型以变异自由能源原则的循环形式为基础,代表高阶推理,在全方位的游戏树上代表(假意)顺序决策。这种表述使我们能够以类似的方式同时处理游戏,在游戏中推理资源耗尽整个游戏树上。将行为者处理能力视为信息成本,未来推理的分支被打折扣,意味着在低级的玩家中,低级自由能源原则的分级,代表高阶推理原理推论,在高档游戏中代表(假)一系列经济游戏的有效性。我们在一系列的游戏中,我们展示了连续的游戏。</s>

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月5日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月4日
VIP会员
相关资讯
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员