A large amount of data on the WWW remains inaccessible to crawlers of Web search engines because it can only be exposed on demand as users fill out and submit forms. The Hidden web refers to the collection of Web data which can be accessed by the crawler only through an interaction with the Web-based search form and not simply by traversing hyperlinks. Research on Hidden Web has emerged almost a decade ago with the main line being exploring ways to access the content in online databases that are usually hidden behind search forms. The efforts in the area mainly focus on designing hidden Web crawlers that focus on learning forms and filling them with meaningful values. The paper gives an insight into the various Hidden Web crawlers developed for the purpose giving a mention to the advantages and shortcoming of the techniques employed in each.


翻译:网路搜索引擎的爬行者仍然无法获得关于WWW的大量数据,因为只有在用户填写和提交表格时才能按需公布。隐藏网络是指收集网络数据,爬行者只能通过与基于网络的搜索表格互动,而不仅仅是通过翻转超链接才能查阅。近10年前,出现了关于隐藏网络的研究,主要线路正在探索访问通常隐藏在搜索表格后面的在线数据库内容的途径。该领域的努力主要侧重于设计隐藏的网络爬行者,侧重于学习表格,并用有意义的价值填充这些表格。文件深入介绍了为此目的开发的各种隐藏网络爬行者,其中提到了每种方法的利弊。

0
下载
关闭预览

相关内容

网络爬虫(又被称为网页蜘蛛,网络机器人,在FOAF社区中间,更经常被称为网页追逐者),是一种按照一定的规则,自动的抓取万维网信息的程序或者脚本,已被广泛应用于互联网领域。搜索引擎使用网络爬虫抓取Web网页、文档甚至图片、音频、视频等资源,通过相应的索引技术组织这些信息,提供给搜索用户进行查询。网络爬虫也为中小站点的推广提供了有效的途径。
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
专知会员服务
60+阅读 · 2020年3月19日
【新书】Python编程基础,669页pdf
专知会员服务
193+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Generative Adversarial Networks: A Survey and Taxonomy
Arxiv
12+阅读 · 2018年9月5日
Arxiv
6+阅读 · 2018年6月18日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2015年9月14日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF推荐 | 国际会议信息10条
Call4Papers
8+阅读 · 2019年5月27日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员