We present FreSh, a lock-free data series index that exhibits good performance (while being robust). FreSh is based on Refresh, which is a generic approach we have developed for supporting lock-freedom in an efficient way on top of any localityaware data series index. We believe Refresh is of independent interest and can be used to get well-performed lock-free versions of other locality-aware blocking data structures. For developing FreSh, we first studied in depth the design decisions of current state-of-the-art data series indexes, and the principles governing their performance. This led to a theoretical framework, which enables the development and analysis of data series indexes in a modular way. The framework allowed us to apply Refresh, repeatedly, to get lock-free versions of the different phases of a family of data series indexes. Experiments with several synthetic and real datasets illustrate that FreSh achieves performance that is as good as that of the state-of-the-art blocking in-memory data series index. This shows that the helping mechanisms of FreSh are light-weight, respecting certain principles that are crucial for performance in locality-aware data structures.This paper was published in SRDS 2023.
翻译:暂无翻译