Data curation tasks that prepare data for analytics are critical for turning data into actionable insights. However, due to the diverse requirements of applications in different domains, generic off-the-shelf tools are typically insufficient. As a result, data scientists often have to develop domain-specific solutions tailored to both the dataset and the task, e.g. writing domain-specific code or training machine learning models on a sufficient number of annotated examples. This process is notoriously difficult and time-consuming. We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via Large Language Models (LLMs). Once the user describes a task, input data, and expected output, the SEED compiler produces an executable pipeline composed of LLM-generated code, small model, and data access modules. SEED uses these generated modules to process most of the data records and dynamically decides when the LLM should step in to directly process some individual records, possibly using the data-access modules to retrieve relevant information from the data sources to assist the LLM in solving the task. To validate this new, revolutionary approach, we conducted experiments on 9 datasets spanning over 5 data curation tasks. The results show that SEED generates domain-specific solutions that significantly outperform their generic counterparts, often approaching the performance of the manually curated solutions that use thousands of labeled training examples. Moreover, in comparison to solutions that use the LLM on every data record, SEED achieves state-of-the-art or comparable few-shot performance, while significantly reducing the number of LLM calls.
翻译:暂无翻译