Locally Linear Embedding (LLE) is a nonlinear spectral dimensionality reduction and manifold learning method. It has two main steps which are linear reconstruction and linear embedding of points in the input space and embedding space, respectively. In this work, we look at the linear reconstruction step from a stochastic perspective where it is assumed that every data point is conditioned on its linear reconstruction weights as latent factors. The stochastic linear reconstruction of LLE is solved using expectation maximization. We show that there is a theoretical connection between three fundamental dimensionality reduction methods, i.e., LLE, factor analysis, and probabilistic Principal Component Analysis (PCA). The stochastic linear reconstruction of LLE is formulated similar to the factor analysis and probabilistic PCA. It is also explained why factor analysis and probabilistic PCA are linear and LLE is a nonlinear method. This work combines and makes a bridge between two broad approaches of dimensionality reduction, i.e., the spectral and probabilistic algorithms.
翻译:局部线性嵌入( LLE) 是一种非线性光谱分光度减少和多重学习方法。 它有两个主要步骤, 分别是线性重建和线性嵌入输入空间和嵌入空间中的点的线性嵌入。 在这项工作中, 我们从随机的角度看待线性重建步骤, 假设每个数据点都以线性重建重量为潜在因素。 LLE 的随机线性线性重建是利用预期最大化解决的。 我们显示三种基本维性减少方法, 即 LLLE、 系数分析、 概率主元组成部分分析( PCA) 之间存在理论联系。 LLE 的随机性线性重建与系数分析和概率性五氯苯甲醚相似。 我们还解释了要素分析和概率性五氯苯是线性的原因, LLE是一种非线性方法。 这项工作结合了两个广泛的维度减少方法, 即光谱值和概率性算法, 并连接了两个广泛的方法。