Recent advances in time series classification have largely focused on methods that either employ deep learning or utilize other machine learning models for feature extraction. Though successful, their power often comes at the requirement of computational complexity. In this paper, we introduce GeoStat representations for time series. GeoStat representations are based off of a generalization of recent methods for trajectory classification, and summarize the information of a time series in terms of comprehensive statistics of (possibly windowed) distributions of easy to compute differential geometric quantities, requiring no dynamic time warping. The features used are intuitive and require minimal parameter tuning. We perform an exhaustive evaluation of GeoStat on a number of real datasets, showing that simple KNN and SVM classifiers trained on these representations exhibit surprising performance relative to modern single model methods requiring significant computational power, achieving state of the art results in many cases. In particular, we show that this methodology achieves good performance on a challenging dataset involving the classification of fishing vessels, where our methods achieve good performance relative to the state of the art despite only having access to approximately two percent of the dataset used in training and evaluating this state of the art.
翻译:时间序列分类的最近进展主要集中于采用深层次学习或使用其他机器学习模型进行特征提取的方法。虽然这些方法很成功,但其力量往往来自计算的复杂性要求。在本文件中,我们采用了时间序列的GeoStat表示法。GeoStat的表示法基于对近期轨迹分类方法的概括,从易计算不同几何数量、不需要动态时间扭曲的(可能窗口化的)分布综合统计数据中总结了时间序列的信息。所使用的特征是直观的,需要最低参数调控。我们对一些真实数据集进行了地理统计的详尽评估,显示在这些模型上受过培训的简单的KNN和SVM分类人员在需要大量计算能力的现代单一模型方法方面表现出奇异,并在许多情况下达到了艺术成果状况。我们特别表明,这种方法在涉及渔船分类的具有挑战性的数据集上取得了良好的表现,我们的方法与艺术状况相比,尽管只有大约2%的培训和评估中所使用的数据集。