Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner. Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server. But the training efficiency is often throttled by challenges arising from limited communication and data heterogeneity. This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck. Additionally, we leverage a bi-level optimization framework to personalize the federated learning model so as to cope with the data heterogeneity issue. As a result, it enhances the generalization and robustness of each client's local model. We elaborate on the model training procedure and its advantages over conventional frameworks. We provide a convergence analysis that theoretically demonstrates the training efficiency. We also conduct extensive experiments to validate the efficacy of the proposed framework.


翻译:联邦边缘学习是一种很有希望的技术,可以在无线网络边缘以保护隐私的方式部署情报。在这种环境下,多个客户在边缘服务器的协调下合作培训了一个全球通用模型。但培训效率往往受到通信和数据差异性有限的挑战的干扰。本文介绍了一个分散的培训模式,采用模拟的空中计算来解决通信瓶颈问题。此外,我们利用一个双级优化框架,使联合学习模型个人化,以便应对数据差异性问题。因此,它加强了每个客户本地模型的普及性和稳健性。我们详细介绍了示范培训程序及其相对于常规框架的优势。我们从理论上展示了培训效率的趋同分析。我们还进行了广泛的实验,以验证拟议框架的功效。</s>

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
专知会员服务
159+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
12+阅读 · 2023年1月19日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
10+阅读 · 2021年3月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关论文
Arxiv
12+阅读 · 2023年1月19日
Arxiv
20+阅读 · 2022年10月10日
Arxiv
11+阅读 · 2022年9月1日
Arxiv
10+阅读 · 2021年3月30日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Meta-Transfer Learning for Zero-Shot Super-Resolution
Arxiv
43+阅读 · 2020年2月27日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员