We introduce a novel framework called combinatorial logistic bandits (CLogB), where in each round, a subset of base arms (called the super arm) is selected, with the outcome of each base arm being binary and its expectation following a logistic parametric model. The feedback is governed by a general arm triggering process. Our study covers CLogB with reward functions satisfying two smoothness conditions, capturing application scenarios such as online content delivery, online learning to rank, and dynamic channel allocation. We first propose a simple yet efficient algorithm, CLogUCB, utilizing a variance-agnostic exploration bonus. Under the 1-norm triggering probability modulated (TPM) smoothness condition, CLogUCB achieves a regret bound of $\tilde{O}(d\sqrt{\kappa KT})$, where $\tilde{O}$ ignores logarithmic factors, $d$ is the dimension of the feature vector, $\kappa$ represents the nonlinearity of the logistic model, and $K$ is the maximum number of base arms a super arm can trigger. This result improves on prior work by a factor of $\tilde{O}(\sqrt{\kappa})$. We then enhance CLogUCB with a variance-adaptive version, VA-CLogUCB, which attains a regret bound of $\tilde{O}(d\sqrt{KT})$ under the same 1-norm TPM condition, improving another $\tilde{O}(\sqrt{\kappa})$ factor. VA-CLogUCB shows even greater promise under the stronger triggering probability and variance modulated (TPVM) condition, achieving a leading $\tilde{O}(d\sqrt{T})$ regret, thus removing the additional dependency on the action-size $K$. Furthermore, we enhance the computational efficiency of VA-CLogUCB by eliminating the nonconvex optimization process when the context feature map is time-invariant while maintaining the tight $\tilde{O}(d\sqrt{T})$ regret. Finally, experiments on synthetic and real-world datasets demonstrate the superior performance of our algorithms compared to benchmark algorithms.


翻译:暂无翻译

0
下载
关闭预览

相关内容

安谋控股公司,又称ARM公司,跨国性半导体设计与软件公司,总部位于英国英格兰剑桥。主要的产品是ARM架构处理器的设计,将其以知识产权的形式向客户进行授权,同时也提供软件开发工具。 维基百科
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
143+阅读 · 2020年7月6日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
28+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月18日
Arxiv
0+阅读 · 11月18日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
0+阅读 · 11月21日
Arxiv
0+阅读 · 11月19日
Arxiv
0+阅读 · 11月18日
Arxiv
0+阅读 · 11月18日
Arxiv
12+阅读 · 2020年12月10日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
14+阅读 · 2018年5月15日
相关基金
国家自然科学基金
10+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员