We analyze boundedly rational updating from aggregate statistics in a model with binary actions and binary states. Agents each take an irreversible action in sequence after observing the unordered set of previous actions. Each agent first forms her prior based on the aggregate statistic, then incorporates her signal with the prior based on Bayes rule, and finally applies a decision rule that assigns a (mixed) action to each belief. If priors are formed according to a discretized DeGroot rule, then actions converge to the state (in probability), i.e., \emph{asymptotic learning}, in any informative information structure if and only if the decision rule satisfies probability matching. This result generalizes to unspecified information settings where information structures differ across agents and agents know only the information structure generating their own signal. Also, the main result extends to the case of $n$ states and $n$ actions.
翻译:我们用一个带有二进制行动和二进制状态的模型来分析从综合统计数据中进行的绝对合理的更新。 代理人在观察未按顺序排列的先前的一系列行动后,各自按顺序采取不可逆转的行动。 每个代理人首先根据总统计数据提出先前的信号, 然后根据Bayes 规则将其信号与先前的信号结合起来, 最后运用一个给每个信仰分配一个( 混合的) 动作的决定规则。 如果先行是根据一个分立的 DeGroot 规则形成的, 那么在任何信息结构中, 行动( 概率), 即\emph{ asystem learning}, 如果决定规则符合概率匹配, 则在任何信息结构中采取不可逆的行动 。 这导致一般化为未知的信息设置, 不同的代理人和代理人只知道产生自己的信号的信息结构。 此外, 主要结果延伸到了n美元和 $ 美元 动作的情况 。