The minimum completion (fill-in) problem is defined as follows: Given a graph family $\mathcal{F}$ (more generally, a property $\Pi$) and a graph $G$, the completion problem asks for the minimum number of non-edges needed to be added to $G$ so that the resulting graph belongs to the graph family $\mathcal{F}$ (or has property $\Pi$). This problem is NP-complete for many subclasses of perfect graphs and polynomial solutions are available only for minimal completion sets. We study the minimum completion problem of a $P_4$-sparse graph $G$ with an added edge. For any optimal solution of the problem, we prove that there is an optimal solution whose form is of one of a small number of possibilities. This along with the solution of the problem when the added edge connects two non-adjacent vertices of a spider or connects two vertices in different connected components of the graph enables us to present a polynomial-time algorithm for the problem.
翻译:最小完成( 填充) 问题定义如下: 如果有一个图形家庭 $\ mathcal{ F} $( 更一般地说, 属性$\ Pi$ ) 和 一个图形 G$, 完成问题要求将最小数量的非前沿添加到$G$, 这样产生的图形就属于图形家庭 $\ mathcal{ F} ( 或有属性$\ Pi$ ) 。 对于许多完美的图形和多元解决方案的子类来说, 这个问题是 NP 完成的, 仅用于最小的完成组。 我们用一个加边的P_ 4$ sproach $G$ 来研究最小完成问题。 对于问题的任何最佳解决方案, 我们证明存在一种最佳的解决方案, 其形式是少量的可能性之一 。 这与加边连接两个非相近点的蜘蛛的顶端或两个相连接的顶端时的问题的解决方案一起, 使我们能够提出一个问题的多边时间算法 。