An edge-coloring of a graph $G$ with colors $1,\ldots,t$ is called an \emph{interval $t$-coloring} if all colors are used and the colors of edges incident to each vertex of $G$ are distinct and form an interval of integers. In 1990, Kamalian proved that if a graph $G$ with at least one edge has an interval $t$-coloring, then $t\leq 2|V(G)|-3$. In 2002, Axenovich improved this upper bound for planar graphs: if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{11}{6}|V(G)|$. In the same paper Axenovich suggested a conjecture that if a planar graph $G$ has an interval $t$-coloring, then $t\leq \frac{3}{2}|V(G)|$. In this paper we confirm the conjecture by showing that if a planar graph $G$ admits an interval $t$-coloring, then $t\leq \frac{3|V(G)|-4}{2}$. We also prove that if an outerplanar graph $G$ has an interval $t$-coloring, then $t\leq |V(G)|-1$. Moreover, all these upper bounds are sharp.
翻译:关于平面图的区间边着色
摘要:
本文研究了图$G$的边着色问题。若将$G$的边用$1,\ldots,t$中的$t$种颜色进行染色,且每个顶点的相邻边的颜色都是不同的整数区间,则称这种染色为\emph{区间$t$-着色}。在1990年,Kamalian证明了:如果一个非空图$G$有一种区间$t$-着色,则$t\leq2|V(G)|-3$。2002年,Axenovich对于平面图给出更紧的上界:如果一个平面图$G$是区间$t$-可着色的,则$t\leq \frac{11}{6}|V(G)|$。同时,Axenovich提出了一个猜想:如果一个平面图$G$是区间$t$-可着色的,则$t\leq \frac{3}{2}|V(G)|$。本文证明了这个猜想,并且给出了上界的更紧密的界限:如果一个平面图$G$被区间$t$-着色,则$t\leq \frac{3|V(G)|-4}{2}$。同时,本文也证明了外向平面图的类似性质:如果一个外向平面图$G$被染成一个区间$t$-着色,则$t \leq |V(G)|-1$。而且,所有这些上界都是紧的。