Variational inference (VI) and Markov chain Monte Carlo (MCMC) are two main approximate approaches for learning deep generative models by maximizing marginal likelihood. In this paper, we propose using annealed importance sampling for learning deep generative models. Our proposed approach bridges VI with MCMC. It generalizes VI methods such as variational auto-encoders and importance weighted auto-encoders (IWAE) and the MCMC method proposed in (Hoffman, 2017). It also provides insights into why running multiple short MCMC chains can help learning deep generative models. Through experiments, we show that our approach yields better density models than IWAE and can effectively trade computation for model accuracy without increasing memory cost.
翻译:变式推断(VI)和Markov链条蒙特卡洛(MCMC)是学习深重基因模型的两个主要近似方法,通过尽量扩大微小的可能性来学习深重基因模型。在本文中,我们提议使用非经销重要性抽样来学习深重基因模型。我们提议的方法是连接VI和MCMC的桥梁。它概括了六种方法,如变式自动计算器和重要加权自动计算器(IWAE)以及2017年(Hoffman, 2017年)中提议的MMC方法。它也揭示了运行多个短短的MMC链为什么有助于学习深重基因模型。我们通过实验表明,我们的方法产生比IMWAE更好的密度模型,并且可以在不增加记忆成本的情况下有效地交换模型准确性计算。