Zero-Shot Sketch-Based Image Retrieval (ZS-SBIR) is a novel cross-modal retrieval task, where abstract sketches are used as queries to retrieve natural images under zero-shot scenario. Most existing methods regard ZS-SBIR as a traditional classification problem and employ a cross-entropy or triplet-based loss to achieve retrieval, which neglect the problems of the domain gap between sketches and natural images and the large intra-class diversity in sketches. Toward this end, we propose a novel Domain-Smoothing Network (DSN) for ZS-SBIR. Specifically, a cross-modal contrastive method is proposed to learn generalized representations to smooth the domain gap by mining relations with additional augmented samples. Furthermore, a category-specific memory bank with sketch features is explored to reduce intra-class diversity in the sketch domain. Extensive experiments demonstrate that our approach notably outperforms the state-of-the-art methods in both Sketchy and TU-Berlin datasets. Our source code is publicly available at https://github.com/haowang1992/DSN.
翻译:零热相片检索(ZS-SBIR)是一项新颖的跨模式检索任务,在这种任务中,将抽象草图用作查询在零发情景下检索自然图像的查询;大多数现有方法将ZS-SBIR视为传统的分类问题,采用跨渗透性或三重性损失来实现检索,忽视了草图和自然图像之间的领域差距以及草图中大型类内多样性的问题。为此,我们提议为ZS-SBIR建立一个新颖的Domain-Smoothing网络(DSN)。具体地说,建议采用一种跨模式的对比方法,学习通用的表述方法,以通过增加样本来利用采矿关系来缩小域间的差距。此外,还探讨了一个具有草图特征的分类记忆库,以减少素谱领域的阶级内部多样性。广泛的实验表明,我们的做法明显超越了Sketsychy和TU-Berlin数据集中的最新方法。我们的源代码可在https://github.com/haong1992/NDSS公开查阅。