We introduce a class of doubly infinite complex Jacobi matrices determined by a simple convergence condition imposed on the diagonal and off-diagonal sequences. For each Jacobi matrix belonging to this class, an analytic function, called a characteristic function, is associated with it. It is shown that the point spectrum of the corresponding Jacobi operator restricted to a suitable domain coincides with the zero set of the characteristic function. Also, coincidence regarding the order of a zero of the characteristic function and the algebraic multiplicity of the corresponding eigenvalue is proved. Further, formulas for the entries of eigenvectors, generalized eigenvectors, a summation identity for eigenvectors, and matrix elements of the resolvent operator are provided. The presented method is illustrated by several concrete examples.


翻译:我们引入了一类由对角和对角外序列的简单趋同条件决定的双倍无限复杂的雅各基质。 对于属于这一类的每个雅各基质,都与此相关联, 一种分析函数, 称为特性函数, 显示相应的雅各基经营人的点谱限制在合适的域内, 与特性函数的零组合相吻合。 另外, 特性函数零的顺序和相应的等离子值的代数多重的巧合得到了证明。 此外, 提供了一些具体例子, 说明的计算方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
Pluralistic Image Completion
Arxiv
8+阅读 · 2019年3月11日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年6月18日
Arxiv
8+阅读 · 2018年5月15日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员