Feature descriptor of the point cloud is used in many applications such as registration and part segmentation from 3D point clouds. Discriminative representations of the local geometric features is unquestionably the most important task for accurate point cloud analyses. However, it is challenging to develop rotation or scale invariant descriptors. Most of the previous works have either ignored rotations or empirically studied optimal scale parameters, which hinder the applicability of the methods for real-world datasets. In this paper, we present a new local feature description method that is robust to rotation, density, and scales. Moreover, to improve representations of the local descriptors, we propose a global aggregation method. First, we place kernels aligned around each point regarding the normal direction. To avoid the sign problem of the normal vector, we use symmetric kernel point distribution regarding the tangent plane. From each kernel point, we first projected the points from the spatial space to the feature space, which is robust to multiscale and rotation, based on angles and distances. Subsequently, we perform graph convolutions by considering local kernel point structures and long-ranged global context, obtained by a global aggregation method. We experimented with our proposed descriptors on the benchmark datasets (i.e., ModelNet40 and ShapeNetPart) to evaluate the performance of registration, classification, and part segmentation on 3D point clouds. Our methods showed superior performances compared to the state-of-the-art methods by reducing 70$\%$ of the rotation and translation errors in the registration task. Our method also showed comparable performance in the classification and part segmentation tasks without any external data augmentations.
翻译:点云的特征描述符用于许多应用, 如 3D 点云的注册和部分分割 。 对本地几何特征的偏差表示无疑是准确点云分析的最重要任务 。 然而, 开发旋转或比例反动描述符具有挑战性 。 先前的作品大多忽视了旋转或经经验研究的最佳比例参数, 从而阻碍了真实世界数据集方法的适用性 。 在本文中, 我们展示了一种新的本地特征描述方法, 这种方法对于旋转、 密度和比例尺来说是稳健的 。 此外, 为了改进本地描述描述符的表达, 我们建议了一种全球汇总方法 。 首先, 我们将每个点的内核值对正向方向进行对齐。 为避免正常矢量的符号问题, 我们使用了对正向平面的内核点分布。 从每个内核点, 我们首先根据角度和距离来预测从空间到特性空间的点点, 强度到多级和旋转。 随后, 我们通过考虑本地数字内值对本地的内值进行图形旋转, 的内置值结构, 以及长期的内置数据转换方法 。 我们的内置的内置, 显示了一个比值 。 的内置的内置的内值 。 。 。 。 演示的内置的内置的内置和内置的内置的内置 。