This paper presents novel methodologies for conducting practical differentially private (DP) estimation and inference in high-dimensional linear regression. We start by proposing a differentially private Bayesian Information Criterion (BIC) for selecting the unknown sparsity parameter in DP-Lasso, eliminating the need for prior knowledge of model sparsity, a requisite in the existing literature. Then we propose a differentially private debiased LASSO algorithm that enables privacy-preserving inference on regression parameters. Our proposed method enables accurate and private inference on the regression parameters by leveraging the inherent sparsity of high-dimensional linear regression models. Additionally, we address the issue of multiple testing in high-dimensional linear regression by introducing a differentially private multiple testing procedure that controls the false discovery rate (FDR). This allows for accurate and privacy-preserving identification of significant predictors in the regression model. Through extensive simulations and real data analysis, we demonstrate the efficacy of our proposed methods in conducting inference for high-dimensional linear models while safeguarding privacy and controlling the FDR.
翻译:暂无翻译