Grouping together similar elements in datasets is a common task in data mining and machine learning. In this paper, we study parallel algorithms for correlation clustering, where each pair of items are labeled either similar or dissimilar. The task is to partition the elements and the objective is to minimize disagreements, that is, the number of dissimilar elements grouped together and similar elements grouped separately. Our main contribution is a parallel algorithm that achieves a $(3 + \varepsilon)$-approximation to the minimum number of disagreements. Our algorithm follows the design of the PIVOT algorithm by Ailon, Charikar and Newman [JACM'08] that obtains a $3$-approximation in the centralized setting. Our approach effectively reduces the problem to running several instances of correlation clustering on graphs with small maximum degree and hence, a small amount of edges. This reduction makes our technique applicable on several models of massive graph processing, such as Massively Parallel Computing (MPC) and graph streaming. For the linear memory models, such as the linear memory MPC and streaming, our approach yields $O(1)$ time algorithms, where the runtime is independent of $\varepsilon$. In the low-space regime of MPC with strictly sublinear in $n$ memory per machine, we obtain an $O(\log 1/\varepsilon \cdot \mathrm{poly} \log \log n)$-round algorithm.
翻译:将数据集中的类似元素分组在一起是数据挖掘和机器学习的一个共同任务。 在本文中, 我们研究相关组群的平行算法, 每组项目都有相似或不同标签。 任务在于分割元素, 目标是尽量减少分歧, 即将不同元素的数量分组, 以及将相似元素分别分组。 我们的主要贡献是一个平行算法, 实现$( 3+\ varepsilon) $( MPC) 与最低差异数的匹配。 我们的算法遵循Ailon、 Charikar 和 Newman [JACM'08] 设计的 PIVOT 算法, 该算法在集中设置中获得3美元对应值。 我们的方法有效地减轻了问题, 将若干个相关组合的情况放在图表上, 其最大程度较小, 因而是少量的边缘。 这使得我们的技术适用于若干大图表处理模型, 如Massionaly 平行计算( MPC) 和 Newman [JACMaldo] 等线性记忆模型的设计, IMC $( 美元) 和 美元的流流式系统, 我们的磁带 。