The manifold Helmholtzian (1-Laplacian) operator $\Delta_1$ elegantly generalizes the Laplace-Beltrami operator to vector fields on a manifold $\mathcal M$. In this work, we propose the estimation of the manifold Helmholtzian from point cloud data by a weighted 1-Laplacian $\mathbf{\mathcal L}_1$. While higher order Laplacians ave been introduced and studied, this work is the first to present a graph Helmholtzian constructed from a simplicial complex as an estimator for the continuous operator in a non-parametric setting. Equipped with the geometric and topological information about $\mathcal M$, the Helmholtzian is a useful tool for the analysis of flows and vector fields on $\mathcal M$ via the Helmholtz-Hodge theorem. In addition, the $\mathbf{\mathcal L}_1$ allows the smoothing, prediction, and feature extraction of the flows. We demonstrate these possibilities on substantial sets of synthetic and real point cloud datasets with non-trivial topological structures; and provide theoretical results on the limit of $\mathbf{\mathcal L}_1$ to $\Delta_1$.
翻译:多重 Helmholtzian (1-Laplacecian) 运算符 $\ Delta_ 1 美元 优雅地将 Laplace- Beltrami 操作员以 mathcal M$ 用于矢量字段。 在这项工作中, 我们提议从点云数据中用一个加权 1Laplacian $\ mathbbf=mathcal L ⁇ 1 美元来估计多个 Helmholtzian 的倍数 。 虽然引入和研究了更高顺序 Laplacian ave, 这项工作是首次展示一个图表 Helmoltzian, 从一个简化的复合结构中构建为非参数操作员在非参数设置中的测算符。 在关于 $\ mathcal M$, Helmholtzian 是一个有用的工具, 用于分析 $\ mathcal M$ mayal 。 此外, $\ mathf_macal $_ $ $ $_ $ $ $ $_ daltacal $ $1 laxal_ data lax 提供这些在合成结构上流流、 和图像图解算数据流 和图解解的准确数据。