Decentralized Federated Learning (DFL) has received significant recent research attention, capturing settings where both model updates and model aggregations -- the two key FL processes -- are conducted by the clients. In this work, we propose Decentralized Sporadic Federated Learning ($\texttt{DSpodFL}$), a DFL methodology which generalizes the notion of sporadicity in both of these processes, modeling the impact of different forms of heterogeneity that manifest in realistic DFL settings. $\texttt{DSpodFL}$ unifies many of the prominent decentralized optimization methods, e.g., distributed gradient descent (DGD), randomized gossip (RG), and decentralized federated averaging (DFedAvg), under a single modeling framework. We analytically characterize the convergence behavior of $\texttt{DSpodFL}$, showing, among other insights, that we can match a geometric convergence rate to a finite optimality gap under more general assumptions than in existing works. Through experiments, we demonstrate that $\texttt{DSpodFL}$ achieves significantly improved training speeds and robustness to variations in system parameters compared to the state-of-the-art.
翻译:暂无翻译