This work proposes a new computational framework for learning a structured generative model for real-world datasets. In particular, we propose to learn a closed-loop transcription between a multi-class multi-dimensional data distribution and a linear discriminative representation (LDR) in the feature space that consists of multiple independent multi-dimensional linear subspaces. In particular, we argue that the optimal encoding and decoding mappings sought can be formulated as the equilibrium point of a two-player minimax game between the encoder and decoder. A natural utility function for this game is the so-called rate reduction, a simple information-theoretic measure for distances between mixtures of subspace-like Gaussians in the feature space. Our formulation draws inspiration from closed-loop error feedback from control systems and avoids expensive evaluating and minimizing approximated distances between arbitrary distributions in either the data space or the feature space. To a large extent, this new formulation unifies the concepts and benefits of Auto-Encoding and GAN and naturally extends them to the settings of learning a both discriminative and generative representation for multi-class and multi-dimensional real-world data. Our extensive experiments on many benchmark imagery datasets demonstrate tremendous potential of this new closed-loop formulation: under fair comparison, visual quality of the learned decoder and classification performance of the encoder is competitive and often better than existing methods based on GAN, VAE, or a combination of both. Unlike existing generative models, the so learned features of the multiple classes are structured: different classes are explicitly mapped onto corresponding independent principal subspaces in the feature space. Source code can be found at https://github.com/Delay-Xili/LDR.
翻译:这项工作提出了一个新的计算框架, 用于学习真实世界数据集的结构化基因模型。 特别是, 我们提议在由多个独立的多维线性子空间构成的特征空间中, 在多级多维数据分布和线性分析表达(LDR)线性空间中, 学习一个闭路翻转校正文。 特别是, 我们主张, 所寻求的最佳编码和解码映射可以作为两个玩家小游戏的平衡点, 在编码器和解码器之间。 这个游戏的自然功能是所谓的降分级, 一个简单的信息- 用于在功能空间中类似高空的混合物之间距离的信息- 直线性格描述(LDR) 。 我们的配方从控制系统中的闭路翻误反馈中得到灵感, 避免在数据空间或地貌空间空间中任意分布之间的大约距离。 在很大程度上, 这个新的配方可以统一自动编码和GAN 的组合和 GAN 的直径向系统, 自然地将它们扩展到在多级和直系 类和多维级图像数据中学习既具有歧视性、 级和直观性等质量模型的模型的模型的模型的模型的模型 。 在高级和多级数据中, 我们的模型中发现, 以高级和多级和多级和多级的图像级的模型中, 的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟数据, 。