Locally supervised learning aims to train a neural network based on a local estimation of the global loss function at each decoupled module of the network. Auxiliary networks are typically appended to the modules to approximate the gradient updates based on the greedy local losses. Despite being advantageous in terms of parallelism and reduced memory consumption, this paradigm of training severely degrades the generalization performance of neural networks. In this paper, we propose Periodically Guided local Learning (PGL), which reinstates the global objective repetitively into the local-loss based training of neural networks primarily to enhance the model's generalization capability. We show that a simple periodic guidance scheme begets significant performance gains while having a low memory footprint. We conduct extensive experiments on various datasets and networks to demonstrate the effectiveness of PGL, especially in the configuration with numerous decoupled modules.
翻译:当地监督的学习旨在根据对网络中每个分离模块全球损失功能的当地估计来培训一个神经网络,通常在模块中附加辅助网络,以根据贪婪的当地损失估计梯度更新情况。尽管这种培训模式在平行和记忆消耗减少方面具有优势,但它严重降低了神经网络的通用性能。在本文件中,我们建议定期引导当地学习(PGL),将全球目标反复地恢复到基于当地损失的神经网络培训中,主要是为了加强模型的通用能力。我们表明,一个简单的定期指导计划可以在保持低记忆足迹的同时带来显著的绩效收益。我们在各种数据集和网络上进行了广泛的实验,以展示PGL的有效性,特别是在与许多拆解模块的配置中。