Partial Domain Adaptation (PDA) is a practical and general domain adaptation scenario, which relaxes the fully shared label space assumption such that the source label space subsumes the target one. The key challenge of PDA is the issue of negative transfer caused by source-only classes. For videos, such negative transfer could be triggered by both spatial and temporal features, which leads to a more challenging Partial Video Domain Adaptation (PVDA) problem. In this paper, we propose a novel Partial Adversarial Temporal Attentive Network (PATAN) to address the PVDA problem by utilizing both spatial and temporal features for filtering source-only classes. Besides, PATAN constructs effective overall temporal features by attending to local temporal features that contribute more toward the class filtration process. We further introduce new benchmarks to facilitate research on PVDA problems, covering a wide range of PVDA scenarios. Empirical results demonstrate the state-of-the-art performance of our proposed PATAN across the multiple PVDA benchmarks.


翻译:部分域适应(PDA)是一种实用和通用的域域适应(PDA)方案,它放松了完全共享的标签空间假设,使源标签空间包含目标空间。PDA的主要挑战在于源性分类造成的负转移问题。对于视频而言,这种负转移可能由空间和时间特征引发,从而导致更具挑战性的部分视频域适应(PVDA)问题。在本文中,我们提议建立一个新颖的《部分对抗时间紧张网络》(PATAN),通过利用空间和时间特征来过滤源性源性分类,解决PVDA问题。此外,PDATA通过关注对类过滤过程有更大贡献的地方时间特征,构建了有效的整体时间特征。我们进一步引入了新的基准,以促进对PVDA问题的研究,涵盖广泛的PVDA情景。“经验”结果展示了我们提议的PATAN在多个PVDA基准方面的最新表现。

0
下载
关闭预览

相关内容

专知会员服务
32+阅读 · 2021年6月12日
专知会员服务
45+阅读 · 2020年10月31日
【深度学习视频分析/多模态学习资源大列表】
专知会员服务
92+阅读 · 2019年10月16日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Video-to-Video Synthesis
Arxiv
9+阅读 · 2018年8月20日
VIP会员
相关资讯
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员