Deep learning has recently empowered and democratized generative modeling of images and text, with additional concurrent works exploring the possibility of generating more complex forms of data, such as audio. However, the high dimensionality, long-range dependencies, and lack of standardized datasets currently makes generative modeling of audio and music very challenging. We propose to model music as a series of discrete notes upon which we can use autoregressive natural language processing techniques for successful generative modeling. While previous works used similar pipelines on data such as sheet music and MIDI, we aim to extend such approaches to the under-studied medium of guitar tablature. Specifically, we develop the first work to our knowledge that models one specific genre as guitar tablature: heavy rock. Unlike other works in guitar tablature generation, we have a freely available public demo at https://huggingface.co/spaces/josuelmet/Metal_Music_Interpolator


翻译:深层学习最近赋予了图像和文字的赋权和民主化基因模型,最近还同时开展了更多的工作,探索产生更复杂数据形式的可能性,例如音频。然而,由于高度的维度、远距离依赖性和缺乏标准化的数据集,目前音频和音乐的基因模型非常具有挑战性。我们提议将音乐模型作为一系列离散的笔记,我们可以使用自动递减性自然语言处理技术来成功地进行基因模型模型。虽然以前的工作在诸如床单音乐和MIDI等数据上使用了类似的管道,但我们的目标是将这类方法推广到研究不足的吉他标签介质媒介。具体地说,我们开发了第一件工作,使我们知道将一种特定基因模型作为吉他标签:重岩石。不同于吉他标签生成的其他作品,我们在https://huggingface.co/spaces/josuelmet/Metal_OICAtors。我们可以在https://huggingface.co/spaces/joceal/joelmelmet/Metal_OICAtor 上自由公开演示。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
12+阅读 · 2022年1月26日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
35+阅读 · 2021年8月2日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员