We construct a symmetric invertible binary pairing function $F(m,n)$ on the set of positive integers with a property of $F(m,n)=F(n,m)$. Then we provide a complete proof of its symmetry and bijectivity, from which the construction of symmetric invertible binary pairing functions on any custom set of integers could be seen.
翻译:我们在正整数组中构造一个对称的、不可逆的双对配对功能$F(m,n)$,其属性为$F(m,n)=F(n,m)$。然后我们提供完整的证据证明其对称性和双向性,从中可以看到在任何定制整数组中构造对称的、不可逆的双对性函数。