We describe algorithms to obtain an approximate classical description of a $d$-dimensional quantum state when given access to a unitary (and its inverse) that prepares it. For pure states we characterize the query complexity for $\ell_q$-norm error up to logarithmic factors. As a special case, we show that it takes $\widetilde{\Theta}(d/\varepsilon)$ applications of the unitaries to obtain an $\varepsilon$-$\ell_2$-approximation of the state. For mixed states we consider a similar model, where the unitary prepares a purification of the state. In this model we give an efficient algorithm for obtaining Schatten $q$-norm estimates of a rank-$r$ mixed state, giving query upper bounds that are close to optimal. In particular, we show that a trace-norm ($q=1$) estimate can be obtained with $\widetilde{\mathcal{O}}(dr/\varepsilon)$ queries. This improves (assuming our stronger input model) the $\varepsilon$-dependence over the algorithm of Haah et al.\ (2017) that uses a joint measurement on $\widetilde{\mathcal{O}}(dr/\varepsilon^2)$ copies of the state. To our knowledge, the most sample-efficient results for pure-state tomography come from setting the rank to $1$ in generic mixed-state tomography algorithms, which can be computationally demanding. We describe sample-optimal algorithms for pure states that are easy and fast to implement. Along the way we show that an $\ell_\infty$-norm estimate of a normalized vector induces a (slightly worse) $\ell_q$-norm estimate for that vector, without losing a dimension-dependent factor in the precision. We also develop an unbiased and symmetric version of phase estimation, where the probability distribution of the estimate is centered around the true value. Finally, we give an efficient method for estimating multiple expectation values, improving over the recent result by Huggins et al.\ (2021) when the measurement operators do not fully overlap.


翻译:我们描述算法以获取一个大致的典型描述, 当获得一个单一的( 和它的反向) 来准备它时, 以美元为维度的量子状态。 对于纯状态, 我们描述的是 $\ ell_ q$- norm 错误的查询复杂性, 直至对数值的对数。 作为一个特殊的例子, 我们显示它需要全方位的( d/\ varepsilon) 值来获得一个 $\ varepslon 美元- ell_ 2美元 美元- acolorum 的对数子状态的直线性描述。 对于混合状态, 我们考虑的是类似的模式, 单一状态准备着一个净化的状态。 在这个模式中, 我们给出一个高效的算法, 以美元为标准- 美元为标准, 以美元为标准- 的对数值的直位值的对数值进行追踪, 以美元为标准- 以比值的直方位值的对数值的对数值的对数值进行更精确的估值的估测算。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年9月11日
Arxiv
0+阅读 · 2022年9月10日
Arxiv
0+阅读 · 2022年9月9日
Arxiv
0+阅读 · 2022年9月8日
Arxiv
0+阅读 · 2022年9月8日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
专知会员服务
162+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员