We study a general setting of status updating systems in which a set of source nodes provide status updates about some physical process(es) to a set of monitors. The freshness of information available at each monitor is quantified in terms of the Age of Information (AoI), and the vector of AoI processes at the monitors (or equivalently the age vector) models the continuous state of the system. While the marginal distributional properties of each AoI process have been studied for a variety of settings using the stochastic hybrid system (SHS) approach, we lack a counterpart of this approach to systematically study their joint distributional properties. Developing such a framework is the main contribution of this paper. In particular, we model the discrete state of the system as a finite-state continuous-time Markov chain, and describe the coupled evolution of the continuous and discrete states of the system by a piecewise linear SHS with linear reset maps. Using the notion of tensors, we first derive first-order linear differential equations for the temporal evolution of both the joint moments and the joint moment generating function (MGF) for an arbitrary set of age processes. We then characterize the conditions under which the derived differential equations are asymptotically stable. The generality of our framework is demonstrated by recovering several existing results as special cases. Finally, we apply our framework to derive closed-form expressions of the stationary joint MGF in a multi-source updating system under non-preemptive and source-agnostic/source-aware preemptive in service queueing disciplines.


翻译:我们研究的是状态更新系统的总体设置,其中一组源节点向一组监测器提供某些物理过程的最新状况。每个监测器现有信息的最新程度以信息时代(AoI)和在监测器(或等同年龄矢量)中AoI流程的矢量模式量化,这是系统的持续状态。虽然对每个AoI流程的边际分布属性进行了研究,利用随机混合系统(SHS)方法,对各种环境进行了研究,但我们缺乏一种对应方法来系统研究其联合分布属性。开发这样一个框架是本文的主要贡献。特别是,我们将该系统的离散状态作为信息时代(AoI)时代(AoI)的时代(AoI),以及监测器(AoI)在监测器(或等同年龄矢量矢量)的模型中,用一个线性线性SHSHS(SHS)流程的边际分布特性来描述系统的持续和离散状态的演进。我们首先从联合时刻和联合时刻生成功能(MGF)来得出一个任意的不固定的源值序列更新系统。我们随后将一些特殊的变式框架的变式结果。我们最后将当前变化的变现的变现为一个特殊的变式结构,在一般变现的变式框架下,在不同的变式结构下,在不同的变式结构下,在不同的变现为正式的变式结构下,在不同的变现的变现的变现的变式框架下,在不同的变式结构下,在微。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
38+阅读 · 2021年8月31日
Adversarial Mutual Information for Text Generation
Arxiv
13+阅读 · 2020年6月30日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员