Modular exponentiation and scalar multiplication are important operations of most public key cryptosystems, and their fast calculation is essential to improve the system efficiency. The shortest addition chain is one of the most important mathematical concepts to realize the optimization. However, finding a shortest addition chain of length k is an NP-hard problem, whose time complexity is comparable to O($k!$). This paper proposes some novel methods to generate short addition chains. We firstly present a Simplified Power-tree method by deeply deleting the power-tree, whose time complexity is reduced to O($k^2$) sacrificing some increasing of the addition chain length. Moreover, a Cross Window method and its variant are introduced by improving the Window method. More precisely, the Cross Window method uses the cross correlation to deal with the windows and its pre-computation is optimized by the Addition Sequence algorithm. The theoretical analysis is conducted to show the correctness and effectiveness. Meanwhile, the experiment shows that the new methods can obtain shorter addition chains compared to the existing methods. The Cross Window method with the Addition Sequence algorithm can attain 9.5% reduction of the addition chain length, in the best case, compared to the Window method.


翻译:暂无翻译

0
下载
关闭预览

相关内容

Microsoft Windows(视窗操作系统)是微软公司推出的一系列操作系统。它问世于1985年,当时是DOS之下的操作环境,而后其后续版本作逐渐发展成为个人电脑和服务器用户设计的操作系统。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员