Measurements on dynamical systems, experimental or otherwise, are often subjected to inaccuracies capable of introducing corruption; removal of which is a problem of fundamental importance in the physical sciences. In this work we propose physics-informed convolutional neural networks for stationary corruption removal, providing the means to extract physical solutions from data, given access to partial ground-truth observations at collocation points. We showcase the methodology for 2D incompressible Navier-Stokes equations in the chaotic-turbulent flow regime, demonstrating robustness to modality and magnitude of corruption.
翻译:对动态系统的测量,无论是实验性还是其他形式的测量,往往会遇到不准确的情况,从而导致腐败;消除腐败是物理科学中一个至关重要的问题;在这项工作中,我们提议建立物理知情的进化神经网络,以清除固定的腐败,提供从数据中提取物理解决办法的手段,同时在同地点进行局部地面实况观测,我们展示了在混乱和不稳定的流动制度中2D不可压缩的导航-斯托克斯方程式的方法,显示了腐败模式和程度的稳健性。