The main focus of this article is to provide a mathematical study of the algorithm proposed in~\cite{boyaval2010variance} where the authors proposed a variance reduction technique for the computation of parameter-dependent expectations using a reduced basis paradigm. We study the effect of Monte-Carlo sampling on the theoretical properties of greedy algorithms. In particular, using concentration inequalities for the empirical measure in Wasserstein distance proved in~\cite{fournier2015rate}, we provide sufficient conditions on the number of samples used for the computation of empirical variances at each iteration of the greedy procedure to guarantee that the resulting method algorithm is a weak greedy algorithm with high probability. These theoretical results are not fully practical and we therefore propose a heuristic procedure to choose the number of Monte-Carlo samples at each iteration, inspired from this theoretical study, which provides satisfactory results on several numerical test cases.
翻译:本条的主要重点是对“cite{boyaval2010 varience}”中提议的算法进行数学研究,作者建议采用差异减少技术,以使用降低的基数范式计算依赖参数的预期值。我们研究了蒙特-卡洛抽样对贪婪算法理论性质的影响。特别是,利用瓦塞尔斯坦距离实验计量方法的集中不平等,在 ⁇ cite{fournier2015rate}中证明,我们为计算贪婪程序每次反复出现的实证差异所使用的样本数量提供了充分的条件,以保证由此产生的方法算法是一种薄弱的贪婪算法,其概率很高。这些理论结果并不完全实用,因此我们建议采用超常程序,在每次迭代法中选择蒙特-卡洛样本的数量,这从这一理论研究中得到启发,为几个数字测试案例提供了令人满意的结果。