We propose a meshless conservative Galerkin method for solving Hamiltonian wave equations. We first discretize the equation in space using radial basis functions in a Galerkin-type formulation. Differ from the traditional RBF Galerkin method that directly uses nonlinear functions in its weak form, our method employs appropriate projection operators in the construction of the Galerkin equation, which will be shown to conserve global energies. Moreover, we provide a complete error analysis to the proposed discretization. We further derive the fully discretized solution by a second order average vector field scheme. We prove that the fully discretized solution preserved the discretized energy exactly. Finally, we provide some numerical examples to demonstrate the accuracy and the energy conservation.
翻译:我们提出了一个解决汉密尔顿波形方程式的无网点保守的Galerkin方法。我们首先使用Galerkin型配方法的辐射基函数将空间方程式分解。不同于直接使用非线性函数的传统的RBF Galerkin方法,我们的方法在建造Galerkin方程式时使用了适当的投影操作员,这将显示保护全球能源。此外,我们对拟议的离散式提供了完全的错误分析。我们通过第二个顺序平均矢量场方案进一步得出完全离散的解决方案。我们证明,完全离散的方程式完全保存了离散的能量。最后,我们提供了一些数字例子,以证明其准确性和节能性。