The selection of time step plays a crucial role in improving stability and efficiency in the Discontinuous Galerkin (DG) solution of hyperbolic conservation laws on adaptive moving meshes that typically employs explicit stepping. A commonly used selection of time step is a direct extension based on Courant-Friedrichs-Levy (CFL) conditions established for fixed and uniform meshes. In this work, we provide a mathematical justification for those time step selection strategies used in practical adaptive DG computations. A stability analysis is presented for a moving mesh DG method for linear scalar conservation laws. Based on the analysis, a new selection strategy of the time step is proposed, which takes into consideration the coupling of the $\alpha$-function (that is related to the eigenvalues of the Jacobian matrix of the flux and the mesh movement velocity) and the heights of the mesh elements. The analysis also suggests several stable combinations of the choices of the $\alpha$-function in the numerical scheme and in the time step selection. Numerical results obtained with a moving mesh DG method for Burgers' and Euler equations are presented. For comparison purpose, numerical results obtained with an error-based time step-size selection strategy are also given.
翻译:选择时间步骤对于提高适应性移动模贝的双曲保护法的稳定性和效率具有关键作用。 通常使用的时间步骤选择是根据固定和统一的模贝的Curant- Friedrichs-Levy(CFL)条件直接延伸的。 在这项工作中, 我们为实际适应性DG计算中使用的这些时间步骤选择战略提供了一个数学理由。 对线性天平保护法的移动的Mesh DG方法进行了稳定分析。 根据分析, 提出了新的时间步骤选择战略, 其中考虑到美元- alpha$功能( 与通量和网状移动速度的组合值有关)的组合以及Meshe元素的高度。 分析还表明数字计划和时间步骤选择中基于$/alpha美元功能的选择的若干稳定组合。 与移动的Mesh- 时间步骤选择结果, 与移动的Mealpha- Q- 选择结果的平方程式是给定的。 与移动性目标选择结果的平方程式, 与显示的平流式选择结果的平方。