We propose two policy gradient algorithms for solving the problem of control in an off-policy reinforcement learning (RL) context. Both algorithms incorporate a smoothed functional (SF) based gradient estimation scheme. The first algorithm is a straightforward combination of importance sampling-based off-policy evaluation with SF-based gradient estimation. The second algorithm, inspired by the stochastic variance-reduced gradient (SVRG) algorithm, incorporates variance reduction in the update iteration. For both algorithms, we derive non-asymptotic bounds that establish convergence to an approximate stationary point. From these results, we infer that the first algorithm converges at a rate that is comparable to the well-known REINFORCE algorithm in an off-policy RL context, while the second algorithm exhibits an improved rate of convergence.


翻译:我们建议采用两种政策梯度算法来解决政策外强化学习(RL)背景下的控制问题。两种算法都包含一种平滑的功能(SF)基梯度估计办法。第一种算法是基于抽样的重要非政策性评估与基于SF的梯度估计的简单组合。第二种算法受随机差异性降低梯度(SVRG)梯度(SVRG)算法的启发,在更新的迭代法中包括了差异减少。对于这两种算法,我们从中得出了非救济性界限,这些界限使得趋同到大致的固定点。根据这些结果,我们推断,第一种算法的趋同率与众所周知的REINFORCE在非政策性RL背景下的REINFORCE算法相当,而第二种算法的趋同率则有所改善。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
可解释强化学习,Explainable Reinforcement Learning: A Survey
专知会员服务
129+阅读 · 2020年5月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2021年5月25日
Arxiv
7+阅读 · 2018年12月26日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
3+阅读 · 2018年10月5日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员