In this paper, we study a generalization of the classical Voronoi diagram, called clustering induced Voronoi diagram (CIVD). Different from the traditional model, CIVD takes as its sites the power set $U$ of an input set $P$ of objects. For each subset $C$ of $P$, CIVD uses an influence function $F(C,q)$ to measure the total (or joint) influence of all objects in $C$ on an arbitrary point $q$ in the space $\mathbb{R}^d$, and determines the influence-based Voronoi cell in $\mathbb{R}^d$ for $C$. This generalized model offers a number of new features (e.g., simultaneous clustering and space partition) to Voronoi diagram which are useful in various new applications. We investigate the general conditions for the influence function which ensure the existence of a small-size (e.g., nearly linear) approximate CIVD for a set $P$ of $n$ points in $\mathbb{R}^d$ for some fixed $d$. To construct CIVD, we first present a standalone new technique, called approximate influence (AI) decomposition, for the general CIVD problem. With only $O(n\log n)$ time, the AI decomposition partitions the space $\mathbb{R}^{d}$ into a nearly linear number of cells so that all points in each cell receive their approximate maximum influence from the same (possibly unknown) site (i.e., a subset of $P$). Based on this technique, we develop assignment algorithms to determine a proper site for each cell in the decomposition and form various $(1-\epsilon)$-approximate CIVDs for some small fixed $\epsilon>0$. Particularly, we consider two representative CIVD problems, vector CIVD and density-based CIVD, and show that both of them admit fast assignment algorithms; consequently, their $(1-\epsilon)$-approximate CIVDs can be built in $O(n \log^{\max\{3,d+1\}}n)$ and $O(n \log^{2} n)$ time, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
11+阅读 · 2018年3月23日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关论文
Arxiv
15+阅读 · 2022年5月14日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
21+阅读 · 2021年2月13日
Arxiv
21+阅读 · 2019年8月21日
Arxiv
11+阅读 · 2018年3月23日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员