Reinforcement learning (RL), while powerful and expressive, can often prioritize performance at the expense of safety. Yet safety violations can lead to catastrophic outcomes in real-world deployments. Control Barrier Functions (CBFs) offer a principled method to enforce dynamic safety -- traditionally deployed online via safety filters. While the result is safe behavior, the fact that the RL policy does not have knowledge of the CBF can lead to conservative behaviors. This paper proposes CBF-RL, a framework for generating safe behaviors with RL by enforcing CBFs in training. CBF-RL has two key attributes: (1) minimally modifying a nominal RL policy to encode safety constraints via a CBF term, (2) and safety filtering of the policy rollouts in training. Theoretically, we prove that continuous-time safety filters can be deployed via closed-form expressions on discrete-time roll-outs. Practically, we demonstrate that CBF-RL internalizes the safety constraints in the learned policy -- both enforcing safer actions and biasing towards safer rewards -- enabling safe deployment without the need for an online safety filter. We validate our framework through ablation studies on navigation tasks and on the Unitree G1 humanoid robot, where CBF-RL enables safer exploration, faster convergence, and robust performance under uncertainty, enabling the humanoid robot to avoid obstacles and climb stairs safely in real-world settings without a runtime safety filter.
翻译:暂无翻译