With the rapid advancement of LLM models, they have become widely useful in various fields. While these AI systems can be used for code generation, significantly simplifying and accelerating the tasks of developers, their use for students to do assignments has raised ethical questions in the field of education. In this context, determining the author of a particular code becomes important. In this study, we introduce AIGCodeSet, a dataset for AI-generated code detection tasks, specifically for the Python programming language. We obtain the problem descriptions and human-written codes from the CodeNet dataset. Using the problem descriptions, we generate AI-written codes with CodeLlama 34B, Codestral 22B, and Gemini 1.5 Flash models in three approaches: i) generating code from the problem description alone, ii) generating code using the description along with human-written source code containing runtime errors, and iii) generating code using the problem description and human-written code that resulted in wrong answers. Lastly, we conducted a post-processing step to eliminate LLM output irrelevant to code snippets. Overall, AIGCodeSet consists of 2,828 AI-generated and 4,755 human-written code snippets. We share our code with the research community to support studies on this important topic and provide performance results for baseline AI-generated code detection methods.
翻译:暂无翻译