Problem Definition: Allocating sufficient capacity to cloud services is a challenging task, especially when demand is time-varying, heterogeneous, contains batches, and requires multiple types of resources for processing. In this setting, providers decide whether to reserve portions of their capacity to individual job classes or to offer it in a flexible manner. Methodology/results: In collaboration with Huawei Cloud, a worldwide provider of cloud services, we propose a heuristic policy that allocates multiple types of resources to jobs and also satisfies their pre-specified service level agreements (SLAs). We model the system as a multi-class queueing network with parallel processing and multiple types of resources, where arrivals (i.e., virtual machines and containers) follow time-varying patterns and require at least one unit of each resource for processing. While virtual machines leave if they are not served immediately, containers can join a queue. We introduce a diffusion approximation of the offered load of such system and investigate its fidelity as compared to the observed data. Then, we develop a heuristic approach that leverages this approximation to determine capacity levels that satisfy probabilistic SLAs in the system with fully flexible servers. Managerial Implications: Using a data set of cloud computing requests over a representative 8-day period from Huawei Cloud, we show that our heuristic policy results in a 20% capacity reduction and better service quality as compared to a benchmark that reserves resources. In addition, we show that the system utilization induced by our policy is superior to the benchmark, i.e., it implies less idling of resources in most instances. Thus, our approach enables cloud operators to both reduce costs and achieve better performance.


翻译:问题定义:为云服务分配足够能力是一项具有挑战性的任务,特别是当需求是时间变化的、多样化的、包含批量的、需要多种处理资源的多种类型的资源时。在这一背景下,供应商决定是否将其能力的一部分保留到单个工作类别,或者灵活提供。 方法/结果:与世界范围的云服务供应商华伟云合作,我们提出了将多种类型的资源分配到工作岗位并满足其事先指定的服务级别协议(SLAs)的超常政策。我们将该系统建为多级排队网络,同时处理和多种类型的资源。在这种网络中,到达者(即虚拟机器和集装箱)遵循时间变化模式,要求每个处理资源至少有一个单位。虚拟机器如果不能立即服务,集装箱可以加入排队。我们对所提供的系统负荷进行推广近似近似,并调查其与所观察到的数据的准确性。然后,我们开发了超常度方法,利用这种近似方法来确定能力水平,以降低系统稳定度和多种类型的资源,使系统(即虚拟操作者)达到时间变化模式模式模式模式模式模式模式,并需要至少一个单位单位处理处理处理。虚拟机器运行一个单位。虚拟机器运行一个更灵活的政策要求显示一个更灵活的政策。

0
下载
关闭预览

相关内容

Processing 是一门开源编程语言和与之配套的集成开发环境(IDE)的名称。Processing 在电子艺术和视觉设计社区被用来教授编程基础,并运用于大量的新媒体和互动艺术作品中。
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
74+阅读 · 2022年6月28日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2022年10月6日
VIP会员
相关资讯
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员