In the supervised learning domain, considering the recent prevalence of algorithms with high computational cost, the attention is steering towards simpler, lighter, and less computationally extensive training and inference approaches. In particular, randomized algorithms are currently having a resurgence, given their generalized elementary approach. By using randomized neural networks, we study distributed classification, which can be employed in situations were data cannot be stored at a central location nor shared. We propose a more efficient solution for distributed classification by making use of a lossy compression approach applied when sharing the local classifiers with other agents. This approach originates from the framework of hyperdimensional computing, and is adapted herein. The results of experiments on a collection of datasets demonstrate that the proposed approach has usually higher accuracy than local classifiers and getting close to the benchmark - the centralized classifier. This work can be considered as the first step towards analyzing the variegated horizon of distributed randomized neural networks.


翻译:在监督的学习领域,考虑到最近普遍存在计算成本高的算法,注意力正在转向更简单、更轻和较少计算广泛的培训和推论方法。特别是,随机算法目前由于其普遍的基本方法而正在复苏。通过使用随机神经网络,我们研究分布式分类方法,在情况中可以使用的数据不能储存在中央地点,也不能共享。我们建议一种更有效的分配分类解决办法,在与其他代理商共享本地分类法时采用损失压缩法。这种方法源自超维计算框架,并在此加以调整。关于数据集收集的实验结果显示,拟议方法通常比本地分类者更准确,接近基准,即集中分类者。这项工作可以被视为分析分布式随机神经网络的变异地平线的第一步。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
107+阅读 · 2020年5月3日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Arxiv
19+阅读 · 2020年7月13日
Arxiv
4+阅读 · 2019年1月14日
Arxiv
24+阅读 · 2018年10月24日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年6月5日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
Top
微信扫码咨询专知VIP会员