This paper addresses the problem of active information gathering for multi-robot systems. Specifically, we consider scenarios where robots are tasked with reducing uncertainty of dynamical hidden states evolving in complex environments. The majority of existing information gathering approaches are centralized and, therefore, they cannot be applied to distributed robot teams where communication to a central user is not available. To address this challenge, we propose a novel distributed sampling-based planning algorithm that can significantly increase robot and target scalability while decreasing computational cost. In our non-myopic approach, all robots build in parallel local trees exploring the information space and their corresponding motion space. As the robots construct their respective local trees, they communicate with their neighbors to exchange and aggregate their local beliefs about the hidden state through a distributed Kalman filter. We show that the proposed algorithm is probabilistically complete and asymptotically optimal. We provide extensive simulation results that demonstrate the scalability of the proposed algorithm and that it can address large-scale, multi-robot information gathering tasks, that are computationally challenging for centralized methods.
翻译:本文探讨为多机器人系统积极收集信息的问题。 具体地说, 我们考虑机器人的任务是减少在复杂环境中变化的动态隐藏状态不确定性的情景。 大部分现有信息收集方法是集中的, 因此无法应用于向中央用户提供通信的分布式机器人团队。 为了应对这一挑战, 我们提出一种新的分布式抽样规划算法, 它可以大大增加机器人和目标可缩放性, 同时降低计算成本。 在我们的非微型方法中, 所有机器人都建在平行的本地树上, 探索信息空间和相应的运动空间。 随着机器人建造各自的本地树, 他们与邻居沟通, 通过分布式的Kalman过滤器交换和汇总他们对隐藏状态的本地信仰。 我们显示, 拟议的算法是概率完整的, 且不具有任何概率的优化。 我们提供了广泛的模拟结果, 表明拟议算法的可缩放性, 并且它能够处理大规模、 多机器人的信息收集任务, 计算出对集中方法具有挑战性。