Motivated by applications in cancer genomics and following the work of Hajirasouliha and Raphael (WABI 2014), Hujdurovi\'c et al. (IEEE TCBB, to appear) introduced the minimum conflict-free row split (MCRS) problem: split each row of a given binary matrix into a bitwise OR of a set of rows so that the resulting matrix corresponds to a perfect phylogeny and has the minimum number of rows among all matrices with this property. Hajirasouliha and Raphael also proposed the study of a similar problem, referred to as the minimum distinct conflict-free row split (MDCRS) problem, in which the task is to minimize the number of distinct rows of the resulting matrix. Hujdurovi\'c et al. proved that both problems are NP-hard, gave a related characterization of transitively orientable graphs, and proposed a polynomial-time heuristic algorithm for the MCRS problem based on coloring cocomparability graphs. We give new formulations of the two problems, showing that the problems are equivalent to two optimization problems on branchings in a derived directed acyclic graph. Building on these formulations, we obtain new results on the two problems, including: (i) a strengthening of the heuristic by Hujdurovi\'c et al. via a new min-max result in digraphs generalizing Dilworth's theorem, which may be of independent interest, (ii) APX-hardness results for both problems, (iii) two approximation algorithms for the MCRS problem, and (iv) a 2-approximation algorithm for the MDCRS problem. The branching formulations also lead to exact exponential-time algorithms for solving the two problems to optimality faster than the na\"ive brute-force approach.


翻译:受癌症基因组学应用和Hajiirasouliha 和 Raphael (WABI,2014年) 和 Hujdurović 等人 (IEEE TCBB, 即将出现) 的工作驱动, 引入了最小无冲突行分割(MCRS) 问题: 将给定的二进制矩阵的每行分割成一个略微的或一组行, 从而使由此产生的矩阵具有完全的血压特征, 并在此属性的所有矩阵中拥有最小的行数。 Hajirasouliha 和 Raphael 也提议研究一个类似的问题, 称之为最小的无冲突行分割( MDCRS ) 问题, 任务在于最大限度地减少结果矩阵的不同行数。 Hujdurovi\ c 等一行的二行分割问题, 与移动式图表相关的问题, 以 IMFI 问题 相比, 双进制的IMIS 。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
9+阅读 · 2019年4月19日
Risk-Aware Active Inverse Reinforcement Learning
Arxiv
7+阅读 · 2019年1月8日
Arxiv
19+阅读 · 2018年10月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员