The linear ensemble based strategy, i.e., averaging ensemble, has been proposed to improve the performance in unsupervised domain adaptation tasks. However, a typical UDA task is usually challenged by dynamically changing factors, such as variable weather, views, and background in the unlabeled target domain. Most previous ensemble strategies ignore UDA's dynamic and uncontrollable challenge, facing limited feature representations and performance bottlenecks. To enhance the model, adaptability between domains and reduce the computational cost when deploying the ensemble model, we propose a novel framework, namely Instance aware Model Ensemble With Distillation, IMED, which fuses multiple UDA component models adaptively according to different instances and distills these components into a small model. The core idea of IMED is a dynamic instance aware ensemble strategy, where for each instance, a nonlinear fusion subnetwork is learned that fuses the extracted features and predicted labels of multiple component models. The nonlinear fusion method can help the ensemble model handle dynamically changing factors. After learning a large capacity ensemble model with good adaptability to different changing factors, we leverage the ensemble teacher model to guide the learning of a compact student model by knowledge distillation. Furthermore, we provide the theoretical analysis of the validity of IMED for UDA. Extensive experiments conducted on various UDA benchmark datasets, e.g., Office 31, Office Home, and VisDA 2017, show the superiority of the model based on IMED to the state of the art methods under the comparable computation cost.
翻译:以线性连锁为基础的战略,即平均合金,是为了改进在不受监督的领域适应任务中的性能。然而,典型的UDA任务通常受到动态变化因素的挑战,如天气、观点和未标注的目标领域背景等动态变化因素的挑战。大多数先前的混合战略忽视UDA的动态和无法控制的挑战,面临有限的特征表现和性能瓶颈。为了在部署混合模型时加强模型、在域间调整和降低计算成本,我们提出了一个新的框架,即 " 感知模型与蒸馏相结合的模型 " 、 " IME ",它根据不同实例将多个UDA组成模型结合成适应性变化的因素,并将这些组成部分纳入一个小模型。 " IMED " 的核心概念是一个动态实例,它了解UDA的动态和不可控制的挑战,在每一个实例中,一个非线性融合子网络,在部署组合模型和多元元元模型时,基于非线性聚合法的状态模型可以帮助处理动态变化因素。在学习大型的IMDA 模型后,我们通过学习一个可比较的模型, 模型向学生学习的模型,我们进行不同的校正价模型,我们进行各种的学习的学习模型, 模型,我们学习的大学模型, 学习的模型,我们进行着大学级的学习的模型, 学习的模型,让我们的模型,我们进行不同的校正压式的模型的模型,让我们的模型,我们进行不同的校正压的模型, 。